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INTRODUCTION 

The importance of the hydrogen bond is demonstrated by 

its effect on the physical properties of many compounds. The 

first mention of a hydrogen bond was made in an effort to ex

plain the weakness of trimethylammonium hydroxide as a base 

(1). Hydrogen bonding was also discovered to be the basic 

cause of the relatively high degree of association of such 

liquids as water and hydrogen fluoride (2, 3)« Compared to 

similar "hydrides" of their periodic neighbors this high 

degree of association of HgO, HP, and NH^ resulted in anoma

lously high boiling points, melting points, and dielectric 

constants (4). Existence of polymers in the vapor, liquid, 

and solid states of such compounds as HON ($, 6) and HP (7, 

6, 9) were attributed to hydrogen bonding. A structural 

Investigation of ice showed that it had a more open structure 

than solid H^S (10, 11, 12, 13, lW. The structure of ice 

was found to have each oxygen atom tetrahedrally surrounded 

by four other oxygen atoms. The oxygen atoms were spaced far 

enough apart to permit inclusion of a hydrogen atom» 

Pauling (15>) concluded from a comparison of the properties of 

steam and ice that the hydrogen bond was unsymmetrical with 

each oxygen atom having two short, strong hydrogen bonds and 

two long, weak hydrogen bonds, 

Pauling et al. (16, 17) after an investigation of the 

structures of amino acids and polypeptides, tried to deduce 
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stochastically the structure of proteins. They had found that 

hydrogen bonding and the planarity of the amide group were the 

determining factors in the simpler molecules, and they used 

these criteria in obtaining the configuration of proteins. In 

the d-helix form the protein molecule was found to consist of 

polypeptide chains coiling about a helical axis. Each planar 

amide group was bonded by a linear hydrogen bond to the third 

amide group in either direction from it along the polypeptide 

chain. The gt-helix has been found in several proteins 

(18, 19). Two stable arrangements of hydrogen bonded extended 

polypeptide chains were found (20); the identity difference in 

the direction of the chain was found to differ by 0.05 One 

form, called the parallel-chain pleated sheet, is thought to be 

the probable configuration of ft -keratin, and there is some 

evidence that the other form, called the antiparallel-chain 

pleated sheet, has been shown to be the correct configuration of 

silk fibroin and synthetic poly-L-alanine (21, 22). 

The formerly accepted structure of deoxyribosenucleic acid 

(DNA), the basic component of the nuclei of living cells and 

genes, was that proposed by Watson and Crick (23). Their model 

consisted of two chains forming a helical structure. The chains 

consisted of sugar groups linked by phosphate groups with 

planar purine and pyrimidine rings attached to the sugar 

groups and extending out from the chain. The two chains ran 

in opposite directions thereby satisfying the dyadic symmetry 
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of the fiber axis. The purine and pyrimidine rings pointed 

inward towards and perpendicular to the fiber axis. The two 

chains were held together by hydrogen bonds from a purine 

residue of one chain to a pyrimidine residue of the other chain. 

Investigations into the origin of the ferroelectric tran

sition of such compounds as KHgPO^, KD^PO^, ND^D^PO^, and 

Roc belles Salt (21#., 25, 26) indicated that hydrogen bonding was 

a fundamental determinant of this transition. As an example, 

Prazer and Pepinsky found (27) that in the structure of KH^PO^ 

as they approached the Curie point from higher temperatures the 

elongated PO^ tetrahedron assumed a somewhat more regular shape 

and the hydrogen bonds shortened. They suggested that the 

hydrogen bond shortening perpendicular to the dipole axis had 

the effuct of destroying the equidistant arrangement of KOg. 

This in turn caused the potassium ion to build up a preferential 

vibration parallel to the c-axis which induced a similar prefer

ential vibration of the PO^ ion. At the Curie point the 

potassium atom remained permanently displaced from its original 

position and exerted a polarizing influence on the 0^ tetra

hedron. This polarizing effect caused the hydrogens to become 

more ordered and resulted in the observed ferroelectric tran

sition. Thus in a wide variety of phenomena hydrogen bonding 

plays an important role. This study examines further the nature 

of very strong hydrogen bonding. 

Hydrogen bonds are usually divided into two groups, 
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intermolecular hydrogen bonds where the bridging occurs between 

atoms of two different molecules, and intramolecular hydrogen 

bonds where the bridging is across atoms within a single 

molecule. The intramolecular hydrogen bonds are further subdi

vided into long and short bonds. 

A common group of compounds which should form intramole-

lecular hydrogen bonds are the ^-diketones in their enol form. 

This group of compounds can be represented by 

0 0 0-H 0 
Il II l H 

R '—C C—0 — R«" or Rt—C = C— C—R" • 
A I 
H R" R" 

keto-form enol-form 

where R1, R»', and R''» may or may not be the same groupe 

These compounds have received much attention from the spec-

troscopists, but their results proved to be conflicting and 

inconclusive. The simplest group of /3-diketones investigated 

were the diaroylmethanes, where the R'' group is a hydrogen 

atom. In the enol form hydrogen bonding is expected as shown 

below: 

0 —H. • .0 
1 II 

R I  C = C —  C  —  R' « » .  
I 
H 

The simplest diaroylmethane is dibenzoylmethane where R» and 

R'1' are both phenyl groups. In diaroylmethanes the primary 
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question is whether or not the enol form with an intramolecular 

hydrogen bond really exists. Gordy (28) concluded in 1939 from 

chemical evidence that there was an enolic hydrogen bond formed. 

Kohlrausch (29) in 1931+ claimed to show by Raman methods that 

complete enolization existed in dibenzoylmethane. Later, 

another investigation was made of dibenzoylme thane by Rasmus s en 

et al» (30) and they also concluded that almost complete 

enolization existed. It was found that no infrared absorption 

band existed at 3333 cm."-'- where the simple OH stretch occurs 

and that a weak band appeared at 2703 cm."3- No band was ob

served in the usual conjugated ketone region (1695 - 1672 cm."-1-), 

but a very strong band appeared at 1639 - 1538 cm."l This 

latter band was attributed to resonance between the forms 

0 —H* • • • 0 0+-H • • • • 0" 
1 11 11 1 

R 1 — C u r C  —  C R '  '  '  an d  R ' —  C  —  C = C — R «  "  
i i 
R" R<< 

where decrease in the CO double bond character accounted for 

the band shift and the increase in charge accounted for the 

intensity. Several other interpretations of the infrared 

spectra of dibenzoylmethane have been made. Bratoz, Hadzi, and 

Rossmy (31) assigned several bands as follows: 

V(OH) ca. 2700 t 100 cm."l broad and weak 

S (OH) (in plane) 1435 t 35 cm."3-
2/(CO) 1284 t 21j. cm."l 

$(OH) (out of plane) 948 t 12 cm.-l 
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Park et ri. (32) found a strong band at lb39 - 1587 cm."1 

Instead of 1851 - 1639 cm.""3- which they attributed to a Cz= 0 

group attached to an unsaturated methylene group. There are the 

conflicting reports of others who contend that there is no 

enolization in the ji -diketones. The early work of Morton 

et al. (33) in 1934 and the work quoted by Barnes (34) in his 

paper on ei - and -diketones in which no spectroscopic evidence 

was found for a six membered chelated ring led these authors to 

believe that no enolization existed. Henecka (35) did not find 

evidence for either unchelated enols or diketones in his 

investigations. One of the latest works was that of Delany 

(36). He investigated eight diaroylmethanes and concluded that 

these p -diketones were almost completely enolized. He assigned 

the infrared absorption bands 

OH 3521 - 3460 cm."3- (unenolized hydrogen) 

0D 2674 - 2659 cm."3- (unenolized deuterium) 

OH*•*0 2604 cm."1 

0D...0 2174 - 2083 cm."1 

So it can be seen that some confusion exists as to the interpre

tation of the infrared spectrum of ^-diketones. 

From these reports this author believes that the y# -

diketones are nearly 100 percent enolized. The question which 

remains is whether this intramolecular hydrogen bond is a 

symmetrical bond where the hydrogen atom lies exactly between 

the two oxygen atoms, or a statistical distribution of the two 
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forma 

0—H»•• • 0 
1 II 

R'— 0=2 C — C —R« ' 1 

0 • • • • H—* 0 
il I 

and R'—C — G = C—R1 ' ' 

H H 

One method which has been employed to answer this question is 

X-ray crystallography. It has been used to study the structure 

of intramolecular hydrogen bonded compounds in an effort to 

explain their nature. In 1952 Rundle and Parasol (37) proposed 

a symmetrical intramolecular hydrogen bond for the 

dimethylglyoxime complex of nickel. Speakman (38) did a 

structural investigation of potassium hydrogen bisphenylacetate 

and found that the hydrogen atom lay on a 2-fold symmetry 

element. He concluded that the bond must be symmetrical. But 

Davis and Thomas (39) reported an infrared investigation of the 

latter compound and found that all the normal OH modes appeared, 

so they concluded that the bond was not symmetrical. 

An interesting facet of this problem is that the hydrogen 

bond can appear to be symmetrical in two ways. Either the 

hydrogen atom lies.exactly at the center of the bond with a 

large thermal amplitude in the direction of the line of centers 

of the bridged atoms, or two "half hydrogens" lay equidistant 

from the center of the bond in a double potential well (Figure 1) 

with a lesser thermal amplitude in the 0-0 direction. Both of 

these models are equivalent as far as the diffraction of X-rays 

is concerned. The hydrogen atom need not be at the midpoint of 
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the line of centers of the bridged atoms, but may be above the 

line of centers. Several structures show this to be the case 

(40, 41, 42). The problem with an X-ray investigation is that 

the X-rays are scattered by the electrons surrounding each atom 

so it is evident that a hydrogen atom's scattering power is one 

eighth the scattering power of an oxygen atom. To be able to 

find the hydrogen atom position one must have a method of 

"viewing" the hydrogen atom directly. With the advent of large 

nuclear reactors with a high neutron flux neutron diffraction is 

becoming an exceedingly useful tool in this problem. The 

nuclei! of the atoms do the scattering so hydrogen possesses 

about 80 percent of the scattering power of C, N, 0, or F. 

While only a limited number of structural investigations have 

been carried out with neutron diffraction, the results so 

obtained are interesting. 

Bacon end Curry (43) redetermined the structure of 

potassium hydrogen bisphenylacetate in projection by neutron 

diffraction. They found the 0-0 distance to be 2.54 If the 

true situation was the double well model, the OH bond length 

would have been about 1.07 This left a resulting separation 

of O.40 %. between the two "half hydrogens" so that the 
o 

hydrogens lay 0.20 A. to each side of the center of symmetry. 

But the four1er projection showed a root-mean-square amplitude 

of 0.30 j?. for the hydrogen atom peak. The centered model 

seemed to be the likely choice. 
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Figure 1. Schematic representation of hydrogen bond between 
two oxygen atoms a) single potential well 
b) double potential well 
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A neutron diffraction investigation of potassium hydrogen 

male ate (I4J4.) was made in an effort to locate the true position 

of the hydrogen atom. A difference fourier showed the hydrogen 

atom to be directly between the two oxygen atoms. Least squares 

cycles were run first with the hydrogen atom exactly between the 

oxygen atoms and then the model in which two half hydrogens were 

placed 1.05 X. from each oxygen atom. Both models yielded the 

same results so the authors could not say where the hydrogen 

atom lay. However, a study of the anisotropic thermal parame

ters of the hydrogen atom and the oxygen atoms showed that the 

displacement of the oxygen atoms was greater than that of the 

hydrogen. The authors stated that this was a very unusual 

situation for hydrogen containing crystals. They then concluded 

that the oxygen atoms were strongly bonded by the hydrogen and 

that "there exists a mode of correlated motion of considerable 

amplitude in which the oxygen atoms are displaced but the H is 

not...... We submit that at least a close approach to actual 

centering is implied by the foregoing interpretation. " 

Several other neutron studies of hydrogen containing 

crystals have been made with a similar ambiguity as to the 

position of the hydrogen atom. Peterson and Levy (1j5) solved 

the structure of EHgPO^ by neutron methods and noticed that the 

hydrogen peak in the fourier was smeared out between the two 

oxygen atoms. A difference fourier did not resolve the 

ambiguity. They tried both the centered model and the double 

minimum model and found their data to be consistent for both. 
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Bacon and Pease (46) also did a neutron investigation of KHgPO^. 

They plotted the electron density between the two oxygen atoms 

and obtained a hydrogen profile which was very smeared out due 

to the thermal motion. Bacon and Curry (47) also found in the 

structure of sodium sesquicarbonate that the hydrogen atom from 

the water of crystallization lies on a center of symmetry. A 

difference fourier showed a smear in the 0-0 direction and these 

authors decided that the double minimum model fitted their data 

best. All indications are that low temperature neutron studies 

should make a significant contribution to solving the problem of 

exactly where the hydrogen atom is in an intramolecular hydrogen 

bond. 

One of the latest contributions was in the area of X-ray 

crystallography where Williams, Dumke, and Bundle (48) solved 

the crystal structure of bis(meta-bromobenzoyl)methane. The 

formula of the compound is 

0 0 
H ii 

B r^ c /C%-/C^ c /C \ 0 /C^ 0 /B r '  
ii i i n i 
C^C H2 °-0^° 

and it was selected for study because its unit cell volume was 

one half that of dibenzoylmethane. The heavy bromine atom would 

help in the initial investigation. The intensity data were 

collected with a General Electric single crystal orienter in 

order to get the best data obtainable. In this case also it was 
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found that the hydrogen atom lay on a two fold symmetry element. 

But by studying the anisotropic thermal parameters of the oxygen 

atoms Williams et al* concluded that because the root-mean-

square amplitude parallel to the CO bond was low this indicated 

that there was no statistical randomness of the hydrogen atom 

position. The high thermal amplitude of the oxygen atoms out of 

the molecular plane suggested that they were warped out of the 

molecular plane. Unfortunately the intensity data were not of 

sufficient quality to obtain precise results. Also, the heavy 

bromine atom so dominated the structure that the distances 

between light atoms were not of the very highest accuracy* 

The purpose of this dissertation is to reinvestigate the 

short intramolecular hydrogen bond in an effort to determine the 

hydrogen position. A structural investigation of a compound 

similar to bis(meta-bromobenzoyl)methane in number of atomic and 

thermal parameters but with a much lighter atom substituted for 

the bromine atom should give more precise interatomic distances 

and thermal parameters and hence a better interpretation of the 

short intramolecular hydrogen bond. The crystal structure of 

another intramolecular hydrogen bonded compound which does not 

require the hydrogen atom to be on a symmetry element should 

also help solve the ambiguity of the hydrogen position in short 

intramolecular hydrogen bonds. Dr. Bundle suggested solving the 

crystal structure of bis(meta-chlorobenzoyl)methane in hopes 

that the lighter chlorine atom would lead to more precise 

interatomic distances and thermal parameters than was obtained 

with bis(meta-bromobenzoyl)methane * 
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EXPERIMENTAL PROCEDURE 

Preparation of the Crystal 

Crystals of bi s(met a-ohlorobenzoyl)me t hane were prepared 

by a method similar to that used by W. G. Borduin (49) to pre

pare crystals of bis(meta-bromobenzoyl)methane, in this case a 

condensation of meta-chloroethylbenzoate and meta-chloro-

acetophenone in the presence of sodium amide. The reaction is 

0 0 0 0 
„ Il ^ Il NaNH2 w H II „ 

Cl-Cf-C-OCoHr' + Cl-tf-C-CHo ^ Cl-0-C-CHo-C-Gf-Cl. 
2 5 ^ 3 Et20 2 

An ether suspension of sodium amide was prepared by reacting 

1.5 grams of clean, dry sodium with 100 mis. of liquid ammonia. 

After stirring for 20 minutes the ammonia was allowed to evapo

rate and enough ether was added to keep the liquid level 

constant. 

6.5 grams of meta-chloroacetophenone in 25 mis. of ether 

were added to the amide suspension over a period of a few min

utes. After not longer than five .minutes 10.5 grams of meta-

chloroethylbenzoate in 25 mis. of ether were added slowly to the 

solution and the mixture was refluxed for two hours. The 

resulting gelatinous mixture was immediately cooled to room 

temperature in an ice bath. The cool mixture was poured into 

150 mis. of water and neutralized with 0,5 N HC1 and extracted 

with ether. The ether layer was separated and the ether then 

removed leaving white needle crystals and a brown oil. To 
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remove the oil, the residue was dissolved in 100 mis. of ether 

then 200 mis. of two molar hot, filtered cupric acetate solution 

was added. A light-green, waxy coagulate of the copper complex 

of the dike tone precipitated from the solution. The preci

pitate was. washed twice with 100 mis. of petroleum ether and 

hydrolized in a solution of 250 mis. of 30 percent sulfuric 

acid and l£0 mis. of ether. The hydrolysis did not proceed 

spontaneously so a few milliliters of concentrated sulfuric acid 

were added. The hydrolysis then proceeded readily. The ether 

layer was separated and the water layer extracted twice with 

SO ml. portions of ether. The three ether portions were com

bined and dried over sodium sulfate for two hours. The ether 

was then allowed to evaporate and white needle crystals 

(m.p. 154 - 155°C.) remained. These crystals were then 

re crystallized from chloroform, 

X-Ray Investigation 

Rotation, zero, and first layer equi-inclination 

Weissenberg photographs were taken of a crystal rotating about 

its needle axis. The crystal was found to have orthorhombic 

symmetry. The axes were arbitrarily assigned and the extinc

tions were"consistent with either of the space groups Pbma or 

Pb2^a. The axes were permuted in order to obtain a space group 

listed in the International Tables for X-Ray Crystallography 

(50); namely, Pca2^. Its centrosymmetric equivalent was Pcam. 

Back reflection Weissenberg photographs were taken about 
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the a- and b-axes with CrK^ radiation, and lattice constants 

consistent with the choice of axes of space group' Pca2^ wejje 

found to be 

a = 30.082 i 0.002 L . 

b = 3.850 ± 0.005 i. 

c = 11.123 t 0.002 X. 

The observed density of the crystals determined by the float

ation method was 1.50 gms./cc. while the calculated density, 

assuming four molecules per unit cell and molecular formula 

C15H10°2C12» was !*5l3 gms./cc. 

Assuming the molecule to have the configuration represented 

in Figure 2 it was decided that the molecule lies nearly 

parallel to the (0,1,0) plane in order for the unit cell to 

accommodate four molecules. Since no overlap results in this 

projection it was decided to solve the structure in this pro

jection initially. 

It can be seen that the choice of the space group Pcam 

would not have been correct because this space group has the 

special four-fold symmetry 

x,y,lA; x,y,3Aî 1/2 + x,y,l/%; 1/2 - x,y,3A. 

This symmetry demands that the entire molecule lay at z = l/f*. 

or ï= 3/h» but this could not be, because the short axis of 

3.850 2. would.have had to accommodate the width of the planar 

molecule. The width of the planar molecule is essentially that 

of a benzene ring. Including the Van der Waals radii of the 
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Figure 2. Postulated structure of bis(meta-chlorobenzoyDmethane molecule 
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terminal hydrogens this width is 5.18 X. There is clearly not 

enough room to allow for the Van der Waals interactions of the 

atoms between unit cells. The choice of Pca2^ as the space 

group is then seen to be correct. 

Infrared Investigation 

An infrared spectrum of the bis(meta-chlorobenzoyl)-

methane crystals in the form of a KBr pellet (Figure 3) was 

obtained. The spectrum showed the "breathing" mode of the ring 

against the chlorine atom at 769 cm.~l and 689 cra.~l The 

carbonyl stretching mode was also observed at 1516 cm.-1 and 

1589 cm.-l The interpretation of the rest of the spectrum is 

m o r e  a m b i g u o u s  a s  c a n  b e  s e e n  f r o m  p p .  5 - 6 .  

Collection of the X-Ray Intensity Data 

Since it was desired to obtain accurate bond distances 

it was required that the intensity data be as accurate as 

possible. Visual judging of photographic film intensity data 

is generally conceded to be accurate to about 20 percent, while 

data taken with a scintillation counter is felt to be accurate 

to about 3 to 5 percent. On this basis it was decided to take 

scintillation counter data on the bis(meta-chlorobenzoyl)methane 

compound. A suitable crystal was selected using a polarizing 

microscope. Almost all of the crystals showed multicolored 

striae when viewed under polarized light, and at first it was 

thought that this indicated that the crystals were inferior, 
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Figure 3o Infrared spectrum of KBr pellet of bis(meta-chlorobenzoyl)methane 



www.manaraa.com

FREQUENCY (CM! 

5000 4000 3000 2500 2000 1800 1600 1400 1300 1200 1100 

100 

80 

60 

iS 40 

3 4 5 6 7 8 9 
WAVELENGTH (MICRONS) 



www.manaraa.com

22 

but after taking many Weissenberg photographs of crystals with 

striae and a few without, no difference was found in the quality 

of the photographs, so it was concluded that the quality of the 

crystals was not dependent on the striae. 

A suitable crystal was finally chosen which measured 11$ 

microns along its needle axis and had an approximate trape

zoidal cross section. The base of the trapezoid was 96.7 

microns long with angles between the base and sides of 6lf..£° 

and 25.5°. The height of the trapezoid was found to be 35*3 

microns. The crystal was mounted about its needle axis (b-axis) 

and aligned on a General Electric XRD-5 X-ray unit equipped with 

a SPG Spectrogoniometer and scintillation counter. 

The Spectrogoniometer measures the intensity of diffracted 

X-rays in the equatorial plane of the instrument. This equa

torial plane is defined (5l) as the plane consisting of the 

center of the counter tube window, the center of the detector 

slit, the axis of the counter tube collimator system, the center 

of the specimen to be examined, the axis of the X-ray collimator 

system, and the center of the X-ray tube target. The "take-off" 

angle of the instrument is the angle between the plane of the 

X-ray tube target material and the emitted beam of X-rays. This 

angle lies in the equatorial plane of the instrument. A 

"take-off" angle of 0° gives a point source of X-rays, while 

higher and higher "take-off" angles give wider and wider line 

sources of X-rays if the hot line on the target is in the 

horizontal position. 
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The angle chi {%) (figure Ij.) of the orienter was the angle 

between the basal plane of the crystal's reciprocal lattice and 

the equatorial plane of the instrument mentioned above. By 

adjustment of this angle it is possible to bring a reciprocal 

lattice point in the vertical plane down into the equatorial 

plane. 

Consider a vector SQ emerging from the X-ray tube and 

impinging on a crystal. Let this vector have length Kx, where 

A is the wave length of the X-rays. The vector sum of the 

negative of this vector and the vector S emerging from the 

crystal, also of length 'A, is a vector of length 

called the diffraction vector (Figure 5). These three vectors 

all lie in the equatorial plane. If this resultant vector is 

coincident with a reciprocal lattice vector both in direction 

and magnitude, a maximum X-ray diffraction results, as shown by 

von Laue. The angle between SQ and S is the scattering angle, 

26, for the plane represented by the reciprocal lattice vector 

above where 0 is the same as the Bragg diffraction angle defined 

by 

n A =  2d sinô. 

Adjustment of the angle phi {0) of the instrument allows 

one to bring a reciprocal lattice point into the vertical plane 

(Figure 4). The adjustable instrument angle omega (&>) permits 

alignment of the vertical plane so it contains the diffraction 

vector S - SQ (Figure ij.). 
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In the 26 scan technique %t and 26 are adjusted such 

that the conditions for maximum diffraction are satisfied. The 

26 angle is then reduced by 1.66°, so that now the terminus of 

the diffraction vector, S - SQ, is not coincident with the 

reciprocal lattice point of interest. 20 is then allowed to 

increase slowly while the detector is activated. The increasing 

20 angle serves to move the terminus of the diffraction vector, 

S - SQ, through, and beyond the reciprocal lattice point of 

interest. The detector, meanwhile, has been detecting the 

diffracted X-rays from the reciprocal lattice point and a little 

to each side of it. The rate-meter chart gives a profile 

representation of the region scanned, and the scalar contains 

the integrated X-ray intensity of this region. 

o 
The intensity data were collected using a 3*33 26 scan 

with a "take-off" angle of 3.0°. CuK^ radiation was used with 

a Nickel foil filter and a 1.2° beam tunnel apparature. 

Intensity measurements for 11+23 reflections were made in this 

manner. At the end of the collection of the intensity data, 

background intensity data were collected by starting at % - 0° 

and making a 3*33° 26 scan every ten degrees in 26 starting from 

as near zero as possible and going out to l50° in 26. This 

procedure was repeated every 10° in % from 0° to 90°. It was 

found that above values of #= 50° and 26 = 130° the X-ray 

beam was being reflected from the goniometer head into the 

detector thereby giving abnormally high background counts, but 
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Figure 1*.. Schematic representation of General Electric single 
crystal orienter angles a) phi (0) and chi (&) 
b) omega (&>) 
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Figure 5. Schematic representation of the diffraction vector, 
5 - 2>0, to a reciprocal lattice point P showing its 
relation to the incident X-ray beam, 5, and the 
diffracted X-ray beam, 50 
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happily no reflections fell into this region. Below these 

values of % and. 29 it was found that the background was a 

function of 20 only and independent of 

Treatment of the Data 

Background correction 

A program was written for the IBM 650 computer which made 

a linear interpolation in a table of background counts versus 

20. Background counts were then calculated for all of the 

Uj.23 reflections in this manner. 

During the taking of the intensity data if no peak was 

discernible over two small scale divisions above the background 

trace on the rate-meter chart, the reflection was designated as 

an unobserved reflection. 

Absorption correction 

Assuming the crystal had the molecular formula ci5hio°2C12 

and density 1.513 gms./cc. the mass absorption coefficient was 

calculated to be 

j*-= 1*5.05 cm."1 (52). 

For the crystal used to obtain the intensity data the maximum 

and minimum jxR values were calculated to be 

/"Wx • °-518 

By Lambert's Law exp(-y4R) 



www.manaraa.com

30 

is a measure of the transmittance of the crystal to the incident 

X-ray beam, giving a maximum and minimum transmittance value of 

87.6 percent and 59.6 percent respectively. Thus the maximum 

absorption difference was 28.0 percent, and it was deemed 

necessary to make absorption corrections. 

The program of Donald E. Williams1 of this laboratory was 

used to make absorption corrections on the crystal. This 

program, titled ABCOR-I, was written for the Iowa State Cyclone 

computer. The program was restricted to the case in which the 

crystal was made up of n planes either parallel or perpendicular 

to the goniometer rotation axis. The equations of the planes 

forming the faces of the crystal were found by setting 

0 - % — 20 = 0° on the single crystal orienter and referring the 

crystal to the dextral coordinate system (xyz) in which x points 

directly at the observer, y points into the X-ray beam colli

mator, and z points upward. It was found that the b-axis of 

the crystal coincided with the z-axis of this dextral coordinate 

system, and that the (1,0,1) face of the crystal made an angle 

of Hj.2° with the x-axis. The equations of the planes making up 

the crystal faces were then expressed in the form 

asx + bsy + caz + ds ^ 0; s = 1,2, ,n 

where ag, bg, cg, and dg are in millimeters and the sign of dg 

^Williams, D. E. Department of Chemistry, Iowa State 
University of Science and Technology, Ames, Iowa. Private 
communication. I960. 
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Is chosen so as to make the indicated inequality valid. 

The derivation of the following is due to Donald E. 

Williams1. The transmission factor is given by the expression 

b d f 

A(#,%,20) = ^ J J j exp[-ju.(Rp + Rd)]dzdydx 
a c e  

where ff, 20 are the instrument angles defined above, V is 

the volume of the crystal defined by the inequalities 

a à x à b; c(x) à 1 à d(x); e(x,y) é z é- f(x,y), 

is the mass absorption coefficient, Rp is the distance 

traveled by the primary beam, and R^ is the distance traveled 

by the diffracted beam within the crystal. This integral may 

be approximated numerically by Gauss' method 

m m m 

E ZZ YL (b - a) [d(x^) - c(x±)] 
i = 1 j = 1 k = 1 

- e(x1,ylj)] Pi?jP% exp[Y[*p(=i'?ij'=ijk) 

"Bd^xi,7ij,zijk^î 

where x% = a + (b - a)g^ 

7±j = o(%i) + [dtXj,) - c(xi)]gj 

zijk = e<xi'7ij' + 

1This information is given in D. E. Williams' private 
communication on the ABCOR-I program. 
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where lfpx, and. ̂  are the direction cosines of the reverse 

primary beam vector. Similarly we have an expression for the 

diffracted beam vector where and are direction 

cosines of the diffracted beam vector. The correct values of 

Hp and R^ are the smallest positive values in each n-fold set. 

If the crystal space, (xyz), mentioned above is defined to 

coincide with the tabletop space, (uvw), when # = = 20 = 0°, 

the direction cosines of the tabletop space may be transformed 

to the direction cosines of the crystal space by the following 

matrix equation: 

(IH 

/ cos# -sin# 0W cosX 0 -sin*\ / cos 6 sin 0 0\l u\ 
= [ sin# cos# 0 } 0 1 0 ) I -sin 6 cos 6 0 If v 

D 0 1/ \ sin% 0 cos*/ V 0 0 l/\w/. 

If the direction cosines of the reverse primary beam vector are 

(0,1,0), then the direction cosines of the diffracted beam 

vector are (sin 20, -cos 20, 0) in (uvw) space. Substituting 

into the matrix equation yields the following equations for the 

direction cosines: 

% = cos# cos# sin 0 - sin# cos 0 
px 

JCpy = sin# cosX sin 0 + cos# cos 0 

opz = 4lz = sln* 3in 0 

= cos# cos X sin 0 + sin# cos 0 

^dz = s*-n^ 60s % sin 0 - cos# cos 0, 

The distances R^ and Rd may now be found; the value of the 
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integrand may then be found and substitution into Gauss' formula 

to obtain the transmission factor A(#,#,20). 

The greater the value of m, the better Gauss' approximation 

to the triple integral. But as m gets large the calculation 

time of the approximation becomes prohibitive. 

The program was run for several calculated settings of 0, 

X,, and 26 which gave maximum and minimum path lengths for the 

primary and diffracted beams to travel in the crystal. The 

calculation was run for values of m = 7 and m - 4-. For the 

same set of orienter angles the difference in calculated 

absorption coefficients ran between 3 and 6 percent. A com

parison was then made between the calculations when the values 

of m were 7 and $; it was then found that the difference in 

absorption coefficients was less than 3 percent. Absorption 

coefficients were then calculated for all observed reflections 

with a value of m = 5 in Gauss' approximation. 

In order to obtain transmission factors for unobserved 

reflections a plot of transmission factor versus (X + 20) was 

made for the observed reflections, A best fit curve through 

these points was used to make up a table of transmission factor 

versus (% + 20) for every degree in (% + 26), This table was 

then used to obtain a transmission factor for each unobserved 

reflection using a linear interpolation program on an IBM 650 

computer. The entire intensity data were then divided by 

their respective transmission factors to give the absorption 
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corrected intensity for each reflection. 

Treatment of unobserved reflections 

The demanded requirement that a reflection be significant, 

i.e., observed, was that the observed intensity be three times 

greater than its standard deviation 

Intensity - [Cfc - = 30%- Cb) 

where was the total counts of the scalar due to the 

integrated intensity of the reflection, was the scalar counts 

due to the background of the reflection and <7(0^ - C^) was the 

standard deviation of the intensity. Substituting the 

expression for the standard deviation of the intensity 

(c. - c. ) à 3ifcr2(c.) +<r2(C. ) t b' = ̂ 1 v x t' v b 

or i 3"^ct + Cb. 

If - Cb] is. to be significant, we must have the condition 

that tCt " Cbl = rmin 

where I . is the minimum number of counts over and above the 
rain 

background counts which one is able to detect. In the limit 

3"Jct + cb = Imin' 

but approaches in the limit, therefore, since 

^min = k Cb 
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where k is some experimental constant 

k c„ = }Wh 

therefore, k = 3lf2~ / Tfc^« 

The constant k was calculated for each reflection and if 

=ob,>tCb' 

the reflection was treated as an observed reflection, unobserved 

otherwise. 

All the unobserved reflections were treated using 

Hamilton's method (55)« Hamilton stated that the most probable 

intensity of an unobserved reflection, jm, was 

W2 Md / 3 

for the noncentrosymmetric and centrosymmetric cases 

respectively, Hamilton also stated that the standard deviation 

of the intensities for these two cases were 

and <j-2(I) = 1^ / 12 

respectively. The formula for the standard deviation of the 

structure factors for the unobserved reflections was given by 

<T(F) =2^ (F), 
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Substituting the proper values for and CT(I) given above, the 

respective formulas for the centrosymmetric and noncentro-

symmetric cases were 

<T(F) = (F) = .i|472 (F) 
2 P" 

J-(F) =C1I1 (F) = .2886 (F) 
2P-

where now 

-•!¥ 
where LP is the equatorial Lorentz-Polarization correction 

LP = 1 + cos2 29. 
If. sin9 cos9 

A subroutine was written for the IBM 6£o computer which was 

incorporated into a modified version of the Lorentz-Polarization 

correction program, INCOR-I, of Zalkin and Jones1. This 

subroutine calculated the value of k for each reflection, then 

determined whether the reflection was to be treated as an 

observed or unobserved reflection. 

For the case in which the reflections were observed the 

formula used to calculate the standard deviation of the 

structure factor was 

<T(F) = Çp- (F) 

1Zalkin, A., and Jones, R. E. - Department of Chemistry, 
University of California, Berkeley, California. Private 
communication. ca.l95>8. 
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where I was the intensity corrected for LP and absorption, and 

<5"(I) was defined by 

d"2(I) = c t  + Cb  + (.xx C^)2  + ( .yy I)2  

where C^., Cfe, and I were defined above, and .xx and .yy were 

confidence values placed on the individual quantities, i.e., if 

it was felt that the background data were good to 5 percent, 

.xx = .05» etc. A value of .05 was used in the calculation for 

xx and .yy. 

Structural Investigations 

The observed reflections were used to calculate a Patterson 

projection onto the (0,1,0) plane (Figure 6) and a three 

dimensional Patterson map. The chlorine Harker peaks were 

found to have coordinates 

(l2x,-2y,l/2); (1/2 t 2x,0,1/2); (1/2, t 2y,0). 

The Patterson peak between the two chlorine atoms at the 

opposite ends of the molecule was not evident from the Patterson 

projection onto (0,1,0). 

It was decided to calculate a fourier transform in an 

effort to find the angular orientation of the molecule in the 

unit cell. First a weighted reciprocal lattice was constructed 

(Figure 7)• This was done (56) by dividing the absolute 

magnitude of each ( h,0,'jL) observed structure factor by the 

absolute magnitude of the largest observed structure factor in 
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Figure 6. Asymmetric unit of the Patterson projection onto the (0,1,0) plane 
of bis(meta-chlorobenzoyl)raethane. Dashed lines are the arbitrary 
zero contours 
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Figure 7» Weighted reciprocal lattice of the £h,0,Jl} zone of 
bi s(meta-c hlorobenzoyl)methane 
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that zone. The reflections were then divided into groups 

according to the value of the ratio of their structure factor to 

the largest valued structure factor 

o.o-o.i;  0.1-0.3; 0.3-0 .5; 0 .5-0.7; 0.7-0.9; 0.9-1.0. 

The first two groups were omitted for clarity. Each reflection 

was then represented by a spot on a reciprocal space coordinate 

system; the area of the spot was proportional to the value of 

the indicated structure factor ratio. The "benzene circle" was 

defined as the locus to which a benzene ring would transform 

if the plane of the benzene ring was exactly parallel to the 

plane of the "benzene circle"; the radius of this circle was 

0.8 X**1. A benzene ring would then show six prominant peaks on 

the "benzene circle" if the planes of both were parallel. If 

the plane of the benzene ring was tilted at an angle to the 

plane of the "benzene circle," the projection of the benzene 

ring would contract perpendicular to the axis of rotation and, 

therefore, the benzene ring transform would expand in this 

direction an amount equal to the secant of the angle of tilt. 

To obtain an accurate fourier transform one should have 

considered all the molecules in the unit cell, but it was 

decided to attempt an interpretation of the weighted reciprocal 

lattice using only one molecule instead of four. Since the 

molecule possesses mirror symmetry only half of the molecule had 

to be specified. Half of the molecule was drawn to scale in 

the xz-plane parallel to the x-axis, and the x- and z-coordi

nate s in % of each atom were obtained. For mirror symmetry 
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perpendicular to the x-axis at x = 0 the derivation of the 

fourier transform expression was as follows: 

Gj = f j exp{2tri [a*Xj + c*Zj]j + f^ exp[2tri [a*(-x^) + c*Zj]j 

where Gj was the contribution of the jth atom to the total 

fourier transform, f j was the scattering factor of the jth 

atom, a* and c* were the coordinates of the point in reciprocal 

space at which the fourier transform was to be calculated, and 

Xj and zj were the real space coordinates of the jth atom in 5L 

The expression for the total transform was 

G 

G 

G 

G 

G 

This function G was then calculated for 200 reciprocal lattice 

points in the first quadrant of the [o,l,o] zone in reciprocal 

space, and the results were plotted on the same scale as the 

= ̂ 2 f j exp(2Tric*Zj) [exp(2iTia*Xj) + eap(-2TTia*Xj)] 

r = 77 f. exp(2iric*z.) I cos 2rra*x. + 1 sin 2rra*x. + cos 2ira*x. 
J J L J J J 

- i sin 2ira*Xj] 

N/2 
- JU fj exp(2nic^Zj)[2 cos 2rra*Xj J 

N/2 
= L3 f j £cos 2ttc*Zj + i sin 2irc*Zj] [ 2 cos 2ira*Xj] 
j=l 

N/2 r • , 
= 2f j jcos 2ira*Xj cos 2ttc*Zj + i cos 2na*Xj sin 2Trc*Zjj. 
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weighted, reciprocal lattice (Figure 8). For an indication of 

the angular orientation of the benzene ring, peaks were sought 

on the "benzene circle." Comparing peaks on the "benzene 

circles" of the weighted reciprocal lattice and the fourier 

transform it was seen that if the fourier transform was 

rotated 13° about an axis perpendicular to the plane of the 

paper, better agreement of peaks both near the "benzene circle" 

and in the interior would result. Also, if the molecule was 

tilted about 2l\.° out of the plane of the paper, the peaks would 

move off of the "benzene circle." The results of this calcu

lation are shown in Figure 9. Most of the features of the 

weighted reciprocal lattice were in agreement with those of the 

fourier transform, hence it was concluded that these angles 

must approximate the actual angular orientation of the molecule 

in the unit cell. This rotation of 13° leads one to conclude 

that the peak on the [o,l,o] Patterson projection at Ax = .25, 

A z = .lij. was the peak due to parallel carbon-carbon vectors 

between the two benzene rings of the molecule. These peaks 

were 2l|.-fold degenerate due to the four molecules per unit cell 

and six carbon-carbon interactions per molecule. This peak, 

the strongest on the Patterson map, then, was not due to the 
« 

heavy atom interaction. 

To check on the value of 2ij.° for the tilt of the molecule 

out of the xz-plane a section of the three dimensional 

Patterson was studied at A x = .25 (Figure 10). Taking the Ax 

coordinate from the [0,1,0] Patterson map and looking at this 
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Figure 8. Fourier transform of the (h,0 , .fi.) data for bi s ( me t a- c hlor obenzoyl ) -
methane with the length of the molecule parallel to the real space 
x-axis and the molecule lying in the (0,1,0) plane. Circle is the 
"benzene circle" 
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Figure 9. Fourier transform of the ( h,0, JL ) data for bis(meta-chlorobenzoyl)-
methane with the length of the molecule tilted 13° to the real 
space x-axis and the molecule tilted 2ij. out of the (0,1,0) plane. 
Circle is the "benzene circle" 
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Figure 10. Three dimensional Patterson section at Ax = 0.2f> with dashed 
arbitrai,1 y zero contours. Cross indicates 22^-fold degenerate peak 
due to overlap of parallel carbon-carbon vectors from similar 
carbon atoms in the two benzene rings in a molecule of bis(meta-
chlorobenz oyl)methane. The peak at Ay = 0, A z = .0843 la the 
peak due to Cl^Op vectors, and the peak at Ay = 0, Az = .5 is 
the peak due to OlpCl/ vector, where Gif is Cl-, transformed 
to £ - x, y, i + z 
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value on the (. 25, Ay ,Aa) section it was found that the out-of 

plane tilt was about 20.6°. 

Initially the two chlorine atoms and two oxygen atoms were 

used to calculate least squares structure factor refinements 

of the (h,0,JL) data using the IBM 701+. least squares program of 

Busing and Levy (57). Subsequent least squares cycles and 

fourier maps lead to the refinement of the x and z positional 

parameters and ^13* ^33 anisotropic thermal parameters 

of all nineteen atoms in the molecule in the [o,l,o] projection, 

where the form of the anisotropic temperature factor was 

exp (- /^Ll^ — ft22*^ " /^33 2̂ ~ 2 - 2(&^clS~- 2 2^-$* )• 

Busing's program was modified somewhat so as to reject 

reflections with 

IF - F I 
5 b,°' 

where F_ was the observed structure factor of the reflection, 

Fc was the calculated structure factor, and <T(F0) was the 

standard deviation of the observed structure factor, from the 

setting up of the normal equations in the least squares method. 

This was done to insure that erroneously recorded, or somehow 

otherwise adversely affected reflections did not influence the 

parameter shifts. Normally a value of 
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gives a 99 percent confidence limit on the statistical data, so 

a value of the above ratio of 6.0 or greater must have been due 

to some mistake in working up the data, and not just statistical 

error; eleven such reflections out of 182 total were rejected in 

the ( h,0,£.) data. The final agreement factor or R value defined 

by 

obtained was .057 and the weighted R value was .087. Also, the 

value of 

calculation, and N was the number of parameters varied. The 

fourier map of the asymmetric unit is shown in Figure 11. 

Having the refined x and z coordinates of the nineteen 

atoms the next step was to refine the three dimensional data. 

The angle of tilt of the molecule out of the xz-plane had 

previously been found to be about 20°. To obtain the y-trans

lation of the chlorine atoms the ^x = .0875 section of the 

three dimensional Patterson map was studied (Figure 12). The -

cross indicates the nonequivalent chlorine-chlorine vector 

between two molecules. From this, y-parameters were assigned 

to all nineteen atoms and several least squares cycles were run. 

£ l Fo - M  

E )po! 

where nfw* ' M was the number of reflections in the 
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Figure 11. Fourier map of asymmetric unit of bis(meta-chlorobenzoyl)methane 
projected onto (0,1,0) plane. Contours are in e~/A. with dashed 
le /A. contour 
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Figure 12. Three dimensional Patterson section at a x  = 0.0875 with dashed 
arbitrary zero contour. Cross indicates the chlorine-chlorine 
vector between the two nonequivalent chlorine atoms in two 
different molecules 
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The calculation stopped refining at an R value of .230. Upon 

investigation of the calculated structure factors it was found 

that when the h index was odd, the agreement between the calcu

lated and observed structure factors was very poor. For the 

space group Pca2^ when the h index is odd, the real structure 

factor coefficient, A( h,k,jB.) and the imaginary structure factor 

coefficient, B(h,k,i), are given by 

h odd, 2 even: A( h,k,jd) = - sin 2irhx sin 2irky cos 2irJiz 

If the x-coordinate of each atom in the asymmetric unit were 

increased by one quarter unit cell translation, it was seen 

that when h was odd 

which gave a numerical change in value of the calculated 

structure factor for the reflections which had an odd h index. 

This situation did not arise in the (h,0,Z) refinement because 

the h index was always even which gave 

h odd, Ji odd: 

B(h,k,i) = sin 2?rbx sin 2?rky sin 2rrfz 

A(h,k,j>) = cos 2rhx sin 2?rky sin 2TT£Z 

B(h,k,^£) = cos 2rrhx sin 2rzky cos 2ir£z, 

cos 27rh(x + 1/4) = - sin 2rhx 

and sin 2?rh(x + 1/4) = cos 2rbx 

cos 27rh(x + 1/4) = - cos 2/rhx 

sin 27Th(x + 1/4) = - sin 2n-hx 
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but since F. = VA2 + B2 

this change in algebraic sign did not enter in. 

Each x-coordinate was increased by 1/1+. and after several 

cycles the R value dropped to .138. At this time anisotropic 

thermal refinement was begun. Since the ^33' ^13 

anisotropic thermal parameters had already been refined, these, 

along with the anisotropic thermal parameters calculated from 

the three dimensional isotropic thermal parameters were used. 

For ft23.' ^33' ^13 ttie mean va^ue the two quantities was 

calculated and @22 scaled to this. Three more least squares 

cycles gave an R value of .064 without unobserved reflections, 

and .109 including 601 unobserved reflections. During these 

last three least squares cycles the rejection test was again 

used which rejected a reflection from the setting up of the 

normal equations when the inequality 

l p c  - g c U  
<r(F0) = bi° 

was valid. Fourteen reflections were rejected on this basis. 

The intensities of these fourteen reflections were remeasured on 

another crystal as the original crystal had been accidently 

lost, and it was found that all the reflections were acceptable 

when the remeasured intensities were properly reduced to 

structure factors. Another rejection test was used on the data 
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which tested to see if PQ > Fc for unobserved reflections. If 

this inequality was valid, this indicated that the calculated 

intensity of that reflection was too high, and hence in error. 

The reflection was then given zero weight and thereby excluded 

from the normal equations and R value. Two hundred seventy six 

or 45.9 percent of the total 601 unobserved reflections were 

rejected in this manner. 

It was then decided to include nine of the ten hydrogen 

atoms (the enolic hydrogen was omitted) in the least squares 

calculation. The positions of the hydrogen atoms were calcu

lated by considering three carbon atoms forming a 120° angle. 

The hydrogen atom of interest was considered attached to the 

vertex carbon atom. The direction cosines were determined of 
} 

the vector through the two non-vertex carbon atoms and the 

coordinates of the midpoint of the line joining these two atoms 

were found. The direction cosines were then calculated for the 

vector through this midpoint and the vertex carbon atom. The 

coordinates of the hydrogen atom were then found by going 1.0 % 

out along this vector from the vertex carbon atom. Coordinates 

for the nine hydrogen atoms were calculated in this manner. A 

three dimensional difference fourier was calculated in hopes of 

seeing these hydrogen atoms. Six of the hydrogen atoms, Hg, H^, 

Hg, H-^q, H^2> Hp| » showed peaks at the calculated positions. 

The Hcj difference fourier peak was somewhat off from the calcu

lated position, and and H-q did not show any peaks on the 

difference map. 



www.manaraa.com

61 

The nine calculated hydrogen positions were included along 

with the nineteen other atoms in another anisotropic least 

squares cycle. The anisotropic temperature coefficients for 

the hydrogen atoms were calculated using an isotropic temper

ature factor of 5.0. The positional parameters and the 

anisotropic coefficients of the hydrogens were not allowed to 

vary. At least one of the coordinates of each carbon attached 

to a hydrogen atom shifted by two standard deviation units. The 

final agreement factors were found to be .104 with unobserved 

reflections and .060 without unobserved reflections. Also, 

I  W(P0  - T?cv 
= 1.456. 

V M - N 

Figure 13 lists the final structure factors for the chloro-

compound. In each column the first entry is the H index, an 

asterisk after the index indicates that the reflection was 

unobserved. The second entry is the observed structure factor 

multiplied by lO/s^, where s^ is the Busing's overall scale 

factor, the third entry is the calculated structure factor, the 

fourth entry is the real part, A(h,k,£), of the calculated 

structure factor multiplied by 10.0 to retain significant 

digits, and the fifth entry is the imaginary part, B(h,k,j&), 

of the calculated structure factor also multiplied by 10.0. 

Tables 2 and 3 list atomic coordinates and anisotropic thermal 

parameters for each atom. 
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Figure 13» List of final structure factors for bis(meta-
chlorobenzoyl)methane. The first column is the X 
index, an asterisk after the JL index indicates an 
unobserved reflection. The second column is the 
observed structure factor x 10/s , where sq is 

Busing's overall scale factor (.2023); the third 
column is the calculated structure factor x 10/s^. 

The fourth and fifth columns are Ac x 10 and Bc x 10 

respectively 
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M 0 M 0  1  

2 1121 1163 -666 954 
4 723 72C 699 -173 
6 462 476 44' 476 
e 206 216 207 •66 

IC 151 143 141 26 
12 62 7C 64 ?«' 
14 69 96 98 -1 

* 2 M 0 

C 36 26 76 C 
1 2C9 243 -230 -78 
2 9te 926 671 C9C 
3 669 64* -586 
4 622 506 110 493 
5 309 312 130 
t 47? 472 238 
7 23C 216 -7C4 -72 
e 165 166 101 134 
9 266 265 -115 

IC 111 99 92 -36 
11 I2C lis 83 65 
12# 37 44 33 29 
13 72 68 -13 -82 
14. 22 16 16 1 

4 *• 0 

C 236 324 324 -C 
1 224 205 7C -193 
2 771 756 -601 45* 
3 636 598 361 -477 

36C 361 -34C 119 
5* 3C 34 24 24 
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Table 2. Atomic coordinates of the atoms in the asymmetric 
unit of bis(meta-chlorobenzoyl)methane.with standard 
deviations of each. All numbers are reported x lo5 

Atom x/a x/a y/b y/b z/c z/c 

cil 40885 7 4.084. 70 00000 0 

Cla 8334-5 6 20930 89 21959 37 

°1 58082 18 2356 200 1947 53 

°a 66147 19 4-761 214 6265 54 

ci 44940 25 18084- 273 9929 77 

C6 43521 23 324-26 247 20746 92 

c5 
46833 26 44042 275 28823 86 

c4 
51325 25 39178 238 26211 83 

C3 
52582 25 23767 254 15394 75 

ca 4-9365 26 12687 228 7181 77 

°7 57333 25 1784-8 261 12126 76 

C8 60839 21 27812 258 19687 75 

°9 65236 24- 21088 233 16383 71 

°13 61256 22 30734- 225 23842 67 

°12 68564- 28 4.624.6 264 34856 77 

C11 72238 25 554-78 283 41867 84 

°10 76558 29 4-8437 281 37647 86 

ci5 76999 25 31868 273 27006 94 

Ci4 73304- 23 22840 275 20002 88 

Hb 4.014.0 34750 22600 

h5 4-5953 55104 36769 
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Table 2 (Continued) 

Atom x/a x/a y/b y/b z/c z/c 

53736 46688 32020 

H2 50274 -504 -951 

Hq (non-60195 
enolic) 

Hia 65399 

40582 

50177 

27661 

3754% 

H1X 71757 67501 49587 

H10 79521 54914 42258 

Hl4 73600 10182 12062 

The Function and Error program of Busing and Levy (58) was 

used to calculate bond distances, bond angles, and orientation 

of the anisotropic thermal ellipse in relation to the molecule, 

the results of which are partially listed in Tables 4» 5» and 6. 

Table 6 lists direction cosines of each of the three axes of the 

thermal ellipse for each atom. The direction cosines are listed 

for each axis of the thermal ellipse with respect to a coordi

nate system defined by two vectors. The vectors were CyO^ and 

CyCg, where now the three axes of the coordinate system were 

given by the cross vector products 

Axis 1: 

Axis 2: 

Axis 3-

C7°l 

(CyO^) x (C?C8) 

(Axis 1) x (Axis 2). 
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Where now cos et refers to the angle a principle axis makes with 

Axis 1 of the coordinate system, cos/S refers to Axis 2 of the 

coordinate system, and cos if refers to Axis 3. 

Table 3« Anisotropic temperature factors of the atoms in the 
asymmetric unit of bi s(meta-c hlorobenzoyl)me thane x 

Atom fill ft22 /33 P 12 A3 /*23 

cii 88 962? 879 -26 -96 -139 

ci2 73 11668 1463 45 36 135 

°1 114 12101 658 83 -7 -1153 

°2 92 12585 721 49 15 -932 

C1 83 7956 722 70 -14 117 

°b 75 8377 845 74 29 -39 

°5 97 9158 773 -7 -7 -81 

% 97 8237 684 -61 —20 -345 

c3 95 6680 544 -21 -15 384 

c2 89 7213 767 63 -42 796 

c7 95 7256 569 9 3 -7 

c8 65 8699 585 -28 -7 184 

c9 88 6074 614 150 -12 . 98 

°13 74 8016 559 -33 -5 325 

C12 98 8183 702 -21 22 -71 

C11 83 9590 834 -ii4 -7 536 

C10 116 8322 791 -94 -67 211 

ci5 67 8293 1096 66 26 491 

% 78 8992 781 -55 -33 416 

all H's 138 8433 1010 0 0 0 
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Table 4« Bond distances and errors in bis (meta-chlorobenzoyl) 
methane 

atom pair bond distance (2.) error (X.) 

°2 °1 2.4751 .0079 

C11C1 1.7315 .0085 

012°15 1.7272 .0085 

Ob 1.3910 .0122 

cioci5 1.3511 .0136 

1.4142 .0115 

C10°ll 1.4079 .0113 

05 ̂  1.3949 .0107 

C11C12 1.3985 .0097 

% C3 1.3937 .0109 

C12°13 1.3732 .0111 

°3 C2 1.3815 .0101 

013C lif- 1.3617 .0100 

C1 C2 1.3974 .0107 

C14C15 1.4012 .0102 

C3 C7 1.4922 .0102 

c9 C13 1.4819 .0097 

c7 °1 1.2993 .0098 

C9 °2 1.3179 .0089 

°7 °8 I.4024 .0107 

°8 c9 1.3970 .0089 
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Table 4 (Continued) 

atom pair bond distance (&.) error (%.) 

°2 Hg 1.0728 .0093 

°4H4 1.0133 .0084 

C^ 1.0162 .0098 

^ 6 %  l.Olp.6 .0070 

°8 h8 1.0324 .0090 

C10H10 1.0582 .0086 

C11H11 0.9862 .0104 

°12H12 1.0094 .0030 

ci4hI4 
1.0126 .0105 

^ 8 ^  2.0163 .0001 

H12H8 1.9481 .0002 

H12\ 3.5644 ,0002 

Table 5. Bond angles in bis(meta-chlorobenzoyl)methane molecule 
in degrees with error in degrees. Center atom is 
vertex 

atoms bond angle error 

ci1c1 cb 117.327 .590 

Cl2Cl5Cio 119.334 .666 

CI C C^ 119.396 .701 

cl2ci5ci4 118.923 .772 



www.manaraa.com

77 

Table 5 (Continued) 

atoms bond angle error 

C6 C1 c2 123.150 .774 

c10cl5°l4 121.756 .794 

°i c6 Ĉ  117.309 .680 

C15C10°11 118.268 .804 

C6 C5 °4 120.518 .829 

Giociicia 119.634 .853 

c5 °4 c3 119.976 .755 

C11C12C13 120.716 .553 

G3 Cg 120.434 .732 

C12C13C14 119.368 .618 

C3 C2 °1 118.469 .806 

C13Cl4Cl5 120.155 .856 

% C3 C7 122.342 .712 

C12°13C9 120.752 .563 

Cg Cj Cy 117.217 .735 

C14°13C9 119.821 .716 

C3 Cy Oi 116.645 .685 

C13°9 °2 115.676 .613 

c3 c7 c8 122.169 .714 

c13c9 c8 123.641 .695 

°1 °7 c8 121.176 .668 

°2 C9 CQ 120.671 .687 

C7 Cq C^ 120.236 .738 

Cy 0^ 02 89.056 .686 

Cg O2 Oj 88.857 .652 
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Table 6. Direction cosines of the three principal axes of the 
anisotropic thermal ellipse for each atom 

atom principal 
axis 

COS cC cos ft cos y length 
(X.) 

C1l 1 -.36941 .15329 -.91990 .171 X 2 -.90231 .19187 .38601 .253 
3 -.23566 -.96937 -.06906 .268 

ci2 1 .27984 -.05057 -.95871 .181 
2 -.01303 -.99871 .04888 .293 
3 -.95995 -.00116 -.28013 .302 

°i 1 -.98631 .08150 -.14328 .174 
2 -.14831 -.05939 .98715 .231 
3 .07193 .99490 .07067 .315 

Op 1 .94024 -.12386 -.31718 .195 
2 .31276 -.05413 .94828 .203 
3 .13462 .99082 .01216 .323 

ci 1 -.01265 .27401 -.96161*. .183 
2 .84270 -.51473 -.15774 .215 
3 -.53822 -.81237 -.22439 .268 

C6 1 .43867 -.02197 -.89837 .183 
2 .79478 -.45705 .39926 .223 
3 -.41937 -.88916 -.18302 .247 

Cd 1 -.10381 .05934 -.99282 .200 y 2 .91669 -.38157 -.11866 .238 
3 -.38587 -.92243 -.01478 .257 

\ 1 -.73876 .05437 -.67176 .200 
4- 2 -.64713 .22019 .72957 .210 

3 -.18824 -.97371 .12822 .247 

1 -.60146 .74819 -.28008 .175 
3 2 -.08533 .27525 .95587 .207 

3 079226 .60369 -.08870 .237 
c2 1 -.24182 .74423 -.62261 .168 

2 -.28736 .55793 .77854 .197 
3 -.92679 -.36718 -.07893 .273 

C7 1 -.88486 .45243 -.11096 .180 
2 -.13941 -.02993 .98977 .216 
3 -.44448 -.99130 -.08957 .235 
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Table 6 (Continued.) 

atom principal cos <* cos Û cos length 
S2ÉÊ (%.) 

°8 1 
2 
3 

.02373 

. 8124.8 
-.58249 

.00310 
-.58271 
-.81266 

-.99971 
.01748 
-.01633 

.163 

.195 

.259 

C9 1 
2 
3 

-.00570 
-.95571 
-.29424 

.65503 

.21874 
-.72324 

-.75558 
.19687 
-.62476 

.173 

.197 

.232 

c13 1 
2 
3 

-.55993 
-.47887 
-.57606 

.52409 

.42715 
-.73678 

-.64171 
.76694 
-.01180 

.173 

.189 

.245 

c12 1 
2 
3 

.77656 

.50428 
-.37766 

-.35861 
-.13905 
-.92307 

-.51801 
.85226 
.07289 

.203 

.223 

.237 

C11 1 
2 
3 

.14505 

.58886 

.79511 

-.26708 
-.75046 
.60453 

-.95269 
.30004 
-•04841 

.181 

.212 

.287 

°10 1 
2 
3 

-.55339 
-.15507 
.81836 

.31962 

.86775 

.38058 

-.76915 
.47218 
-.43062 

.203 

.236 

.259 

°15 1 
2 
3 

.11074 
-.17330 
-.97862 

.17485 

.97271 
-.15247 

-.97834 
.15423 
-.13801 

.167 

.233 

.281 

% 1 
2 
3 

-.14183 
-.60431 
-.78401 

.12376 

.77500 
-.61974 

-.98212 
.18493 
.03514 

.174 

.207 

.283 
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DISCUSSION OF THE STRUCTURE 

Least squares planes were calculated for the entire mole

cule and several subgroups of the molecule. The IBM 650 program 

of Stewart^ was used. Least squares planes were calculated for 

the Cl^ atom and its attached phenyl group (plane 1), Cl2 and 

its attached phenyl group (plane 2), the enol subgroup, 

^iG^OgCgOg (plane 3), and the entire molecule (plane 4)• The 

planes were of the form 

Ax + By + Cz + 1 - 0. 

The coefficients are listed in Table 7, 

Table 7» Least square plane coefficients for bis(meta-chloro-
benzoyl)methane 

Tlane A B C 

1 -.053071 -2.098751 1.029589 

2 -.050345 -0.992145 0.508572 

3 -.058742 -0.922791 0.492784 

4 -.060025 -1.410536 0,710613 

For each of the least squares planes the perpendicular 

distance to the least squares plane was calculated for every 

atom forming the least squares plane. The perpendicular 

^Stewart, J. M. University of Washington. Seattle, 
Washington. Private communication. I960, 
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distances to the plane of the atoms not forming the least 

squares plane were also calculated. The least squares plane 

which gave the best fit was through the enol subgroup, 

O-jCyCgCgC^. The two next best fits were the planes through the 

two chlorine atoms with their attached phenyl groups. The plane 

through the entire molecule gave the next best fit. There was 

some degree of non-coplanarity of the least squares planes 

through the three subgroups; the angles between planes were 

calculated to be 

L (plane 1, plane 2) = 2.0° 

L (plane 1, plane 3) = 2.9° 

L (plane 2, plane 3) = I.I4.0. 

It can be seen from Table 8 that the plane through the entire 

molecule fitted quite well. The average deviation from this 

plane was .023 X. with a maximum deviation of .068 X. The 

entire molecule was taken to be planar and the perpendicular 
o 

distance between least squares planes was found to be 3*4-63 A. 

The deviations of all the atoms from all the least squares 

planes mentioned above are listed in Table 8. 
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Table 8. Perpendicular distances in X. of atoms in a molecule 
of bis(meta-chlorobenzoyl)methane to several least 
squares planes 

plane perpendicular distance 
of plane from origin 

1 0.4276 

2 0.8957 

atom perpendicular 
distance to plane 

0ll .0058 

=1 —.0288 

°2 .0135 

°3 -.0038 

% .0037 

c5 -.0051 

c6 .0347 

C\
J :—1 O

 .2148 

°1 .0397 

°2 .1229 

C7 .0038 

c8 .0024 

°9 .0480 

C10 .0779 

C11 .068? 

C12 .0709 

°13 .0521 

C14 .1167 

C15 .1157 

ci2 .0248 
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Table 8 (Continued) 

plane perpendicular distance 
of plane from origin 

atom perpendicular 
distance to plane 

0.9544 

'10 

'11 

'12 

'13 

'14 
!i5 

CI-

'8 

-.0277 

.0102 

.0286 

-.0193 

.0005 

-.0171 

.1216 

.0159 

.0384 

.0784 

.0760 

.0494 

.0910 

.1273 

.1575 

.0082 

—*0058 

-.0058 

-.0084 

.0098 

.0071 
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Table 8 (Continued) 

plane perpendicular distance 
of plane from origin 

atom perpendicular 
distance to plane 

'8 

0.6328 

CI. 

CI, 

'10 

311 

'12 

'13 

314 

;i5 

Cl-i 

CI, 

.0029 

-.01:4 

.1249 

.0029 

.0918 

.0760 

.0619 

.1280 

.1772 

.1953 

-.0069 

.0469 

.0561 

-.0153 

-.0107 

-.0195 

,0237 

•0686 

-.0197 

.0313 

-.0165 
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Table 8 (Continued) 

plane perpendicular distance atom perpendicular 
of plane from origin distance to plane 

C2 .0012 

C3 
-.0199 

C4 
.0075 

c5 
.0234 

c6 .0476 

C7 
-.0387 

c8 -.o46l 

°9 -.0256 

°10 -.0206 

°11 -.0038 

C12 .0061 

C13 -.0299 

°lk .0100 

Cl5 
.0010 

The C-C bond distances in the benzene rings were near the 

experimental value of 1.39 f X. (59» p. S-13) except for two 

shorter bonds between C^C^ and C-^QC^. No explanation could 

be given for these short bonds, however, the averages for the 

C-C bond distances for the two phenyl rings were 1.395 &. and 

1.382 X., the latter containing the two short bonds. The bond 
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distances between C^Cy and 0^0^ indicated that these bonds were 

C-C single bonds trigonally coordinated. In the enol ring 

distances between CyCg and CgC^ were indicative of 50 percent 

double bond character. This supported the hypothesis that these 

bond distances are determined by resonance between the two enol 

forms. The two CO bonds (1.31 X.) were longer than the shorter 
of the CO bonds observed in HCO^H and ffCOgH (1.23 %•) (59» p. 

S-13) and indicated that the CO bond was not a pure double bond 

but had some single bond character, again supporting resonance 

in the enol ring. The larger thermal amplitudes of the oxygen 

atoms were normal to the CO bond and hence did not affect the 

accuracy of this bond distance as much as if the larger ampli

tudes were parallel to the bond. The average chlorine-carbon 

distance of 1.729 X. agreed quite well with that observed for 
o-dichlorobenzene (1.735 X.) and m-dichlorobenzene (1.70 X.) 
(59, p. S-llj.). The observed 0-0 distance of 2.475 X. confirmed 
the existence of a strong intramolecular hydrogen bond. When 

compared the O-H-O distances of compounds with weak hydrogen 

bonds such as the acetic acid dimer (2.76 X,) (59» p. M-171), 
or 4-aminosalicylic acid which has an O-H-O distance of 2.70 X. 
and an intramolecular dimer O-H-O distance of 2.64 X. (59» P* 
M-213), and to the O-H-O distances of strongly hydrogen bonded 

compounds such as maleic acid (2.46 X.) (59» p. M-163), it can 
be seen that the O-H-O distance in bis(meta-chlorobenzoyl)-

methane belongs to the latter group. 
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The bond angles in one of the benzene rings varied from 

123.1° to 117.3° with the sum of the angles being 719*9°. The 

second benzene ring had angles varying from 121.7° to 118.2°, 

again with a sum of 719.9°# This near theoretical value of 

720° indicated that both benzene rings were planar. The angles 

°7°i°2 OgOgO^ were both less than 90° and showed that the 

two oxygen atoms were being forced apart by the hydrogen atom 

between them. The larger than normal angles C^CyCg and CgC^C-^ 

indicated that these^angles "opened" to relieve the strain 

caused by the repulsion of Hg from both (HgHj^ distance of 

2.01b 5.) and H-^ (HgH^ distance of 1.948 &.). 

If a hydrogen atom were placed on the line of centers of 

the two oxygen atoms, this would have given an exceedingly small 

C-O-H angle (90°), at least 15° less than normal. It seems 

likely that the hydrogen atom lies off the line of centers of 

the two oxygen atoms. 

Figure llj. represents the anisotropic thermal stereograms 

for selected atoms in a bi s(me t a-c hlorobenzoyl)me t hane molecule. 

The length of each thermal axis is indicated in Â. The plane 

of the paper is the least squares molecular plane and the 

stereograms are in the same orientation as the molecule indi

cated at the top of the Figure. It is evident that both 

chlorine atoms have their shortest thermal vibration parallel 

to the Cl-C bond and their largest thermal vibrations normal 

to this bond. The carbon atoms in the enol ring all have their 
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Figure llj.. Anisotropic thermal stereograms for selected atoms 
in the bis(meta-chlorobenzoyl)methane molecule. 
The plane of the paper is the molecular least 
squares plane and the stereograms are oriented 
in the same manner as the molecule at the top of 
the Figure 
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Figure ll|.. (Continued) 
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greatest thermal vibration nearly perpendicular to the molecular 

least squares plane. A study of the data in Table 6 indicates 

that all the atoms have their greatest vibrations nearly normal 

to the molecular least squares plane, therefore it can be 

concluded that the molecule vibrates as a whole perpendicular 

to the molecular least squares plane. The two oxygen atoms have 

their lowest thermal vibration nearly parallel to the C-0 bond. 

This confirms the hypothesis that the intramolecular hydrogen 

bond is the symmetrical type. For if it were not, the largest 

thermal amplitude of each oxygen atom would have been parallel 

to the C-0 bond. The reason for this is that the anisotropic 

temperature factor is making an effort to correct the oxygen 

atom to a point atom when in reality it appeared to be an 

elongated atom in the C-0 direction caused by a superimposed 

statistical distribution of carbon-oxygen single and double 

bonds. The large anisotropic thermal parameters of the oxygen 

atoms normal to the molecular least squares plane supported the 

hypothesis suggested by Williams et al. (lj.8) that the oxygen 

atoms were warped out of the molecular plane due to the very 

short 0-0 contact. 

Molecular Packing Efficiency 

A comparison was made between the packing efficiencies of 

the nonisostructural compounds bis(meta-bromobenzoyl)methane 

and bis(meta-chlorobenzoyl)methane0 The packing coefficient of 

Kitaigorodskii (60) was calculated for each of these compounds. 
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This coefficient represented the ratio of the volume occupied 

by all the atoms in the unit cell to the volume of the unit 

cell. The coefficient for the bromo- derivative was 0.686 and 

that of the chloro- derivative was 0.691* If the chloro-

derivative was assumed to be isostructural with the bromo-

derivative, the packing coefficient was 0.648. The difference 

in unit cell volumes of the two compounds was 83 while the 

difference in molecular volumes was only i?2 This left an 

excess volume of 34 of the bromo- derivative over the 

chloro- derivative. It was concluded, therefore, that the 

chloro- derivative packed more efficiently than the bromo-

derivative. Figures 1$ and 16 demonstrate the packing of the 

bromine atoms in bis( meta-bromobenzoyl)methane and the chlorine 

atoms in bi s(me ta-c hlorobenzoyl)met hane respectively. It can 

be seen that the bromine atoms tend to pack in sheets while the 

chlorine atoms pack in zigzag chains. The large congregation 

of bromine atoms may in some way compensate for the loss of 

packing efficiency. Figure 17 shows the packing of molecules 

of the chloro- derivative. The Figure is a projection of the 

asymmetric unit onto the (0,1,0) plane with the space group 

symmetry elements indicated. 
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Figure If). Packing of the bromine atoms in sheets in a crystal 
of bi s(met a-bromobenzoyl ) me t hane. a = 4»05 a . ,  
b = 6.39 g.f c = 4.79 A., d = 3.68 L, e = 4.92 Â., 
f = 3.68 A. 
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Figure 16. Packing of chlorine atoms in chains in a crys 
of bis(meta-chlorobenzoyl)methane. a = 3.85 • 
b = 4.58 A., c = 3.69 A. 
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Figure 17, Molecular environment of a molecule of bis(m@ta-chlorobenzoyl)-
methane projected onto the (0,1,0) plane with space group 
symmetry elements indicated 
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SUMMARY 

The structure of bis(meta-chlorobenzoyl)methane has 

provided proof that the enol form is the sole form in the solid 

state and is probably the only form in all ft -diketones in the 

solid state. The bond distances, bond angles, and least 

squares plane calculations confirm a planar molecule and a 

planar enol group with a resonant structure. It has been 

demonstrated that the molecule contains a very strong hydrogen 

bond between the two oxygen atoms. The position of the hydrogen 

atom in the bond, although not directly obtainable, was deduced 

from anisotropic thermal parameters of the two oxygen atoms. 

The hydrogen atom was deduced to be equidistant between the two 

oxygen atoms but probably off the line of centers of the oxygen 

atoms. 

A definite increase in packing efficiency was observed 

for bis(meta-chlorobenzoyl)methane over bis(meta-bromobenzoyl)-

methane with the bromine atoms packing in sheets and the 

chlorine atoms packing in zigzag chains. The reason for the 

increase of packing efficiencies for the not too dissimilar 

compounds poses a very interesting problem* 
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